2006年4月10日 星期一

Flex CRFs v.s. CRF++

比較對照表

CRF++FlexCRFs
Configuration * Freq = 1 * C(sigma^2) = 1.00000 * Number of features: UC (Unigram for current word)/U+BC (Unigram+Bigram for current word) = 7504/11280 * Iteration = 40/43 * f_rare_threshold = 1 * sigma_square = 1 * Number of features: 1851 * Iteration = 128
Result * UC-recall / precision / f-score = 0.6656 / 0.6535 / 0.6595 * U+BC-recall / precision / f-score = 0.6705 / 0.6582 / 0.6643 * recall / precision / f-score = 0.6332 / 0.6362 / 0.6347

FlexCRFs V.S. CRF++

CRF++ FlexCRFs
Feature numbers 30,986 No edge features With edge features
34,848 34,861
Training time 690.10 seconds 20,370.0 seconds
Num. of iterations 88 46
Performance (recall / precision / f-score) 0.6948 / 0.7002 / 0.6975 No edge features With edge features
0.5659 / 0.6033 / 0.5840 0.6642 / 0.6515 / 0.6578
Based on 86918 sentences C(sigma^2) = 1.0