比較對照表
CRF++ | FlexCRFs | |
---|---|---|
Configuration | * Freq = 1 * C(sigma^2) = 1.00000 * Number of features: UC (Unigram for current word)/U+BC (Unigram+Bigram for current word) = 7504/11280 * Iteration = 40/43 | * f_rare_threshold = 1 * sigma_square = 1 * Number of features: 1851 * Iteration = 128 |
Result | * UC-recall / precision / f-score = 0.6656 / 0.6535 / 0.6595 * U+BC-recall / precision / f-score = 0.6705 / 0.6582 / 0.6643 | * recall / precision / f-score = 0.6332 / 0.6362 / 0.6347 |
FlexCRFs V.S. CRF++
CRF++ | FlexCRFs | ||
---|---|---|---|
Feature numbers | 30,986 | No edge features | With edge features |
34,848 | 34,861 | ||
Training time | 690.10 seconds | 20,370.0 seconds | |
Num. of iterations | 88 | 46 | |
Performance (recall / precision / f-score) | 0.6948 / 0.7002 / 0.6975 | No edge features | With edge features |
0.5659 / 0.6033 / 0.5840 | 0.6642 / 0.6515 / 0.6578 | ||
Based on 86918 sentences C(sigma^2) = 1.0 |
沒有留言:
張貼留言